There are multiple approaches to this
$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f(x)-0}{g(x)-0}$$
\(\because f(a)=g(a)=0\)
$$ \begin{align*} \lim_{x\to a}\frac{f(x)}{g(x)}&=\lim_{x\to a}\frac{f(x)-f(a)}{g(x)-g(a)}\\\\ &=\lim_{x\to a}\left(\frac{\space\space\dfrac{f(x)-f(a)}{x-a}\space\space}{\dfrac{g(x)-g(a)}{x-a}}\right)\\\\ &=\frac{\displaystyle\lim_{x\to a}\left(\dfrac{f(x)-f(a)}{x-a}\right)}{\displaystyle\lim_{x\to a}\left(\dfrac{g(x)-g(a)}{x-a}\right)} \end{align*} $$
By definition \(f’(a)=\displaystyle\lim_{x\to a}\dfrac{f(x)-f(a)}{x-a}\)
$$\therefore\quad\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{f’(a)}{g’(a)}=\lim_{x\to a}\frac{f’(x)}{g’(x)}$$
It works, but it’s average, and not especially pleasant to look at. There’s a less generic way to do it, which in my opinion is really cool.
$$f(x)\approx f(a)+f’(a)(x-a)$$
Linear approximation is accurate for values of \(x\) close to \(a\), and as \(x\to a\), the approximation becomes
$$f(x)=f(a)+f’(a)(x-a)$$
Therefore as \(x\to a\)
$$ \frac{f(x)}{g(x)}=\frac{f(a)+f’(a)(x-a)}{g(a)+g’(a)(x-a)} $$
We know \(f(a)=g(a)=0\)
$$ \begin{align*} &=\frac{f’(a)(x-a)}{g’(a)(x-a)}\\\\ &=\frac{f’(x)}{g’(x)} \end{align*} $$