Same steps for differential equations.
$$ \begin{align*} \frac{1}{y\ln y}dy&=dx\\ \int\frac{1}{y\ln y}dy&=\int dx\\ \end{align*} $$
Let \(u=\ln y\), and notice \(\displaystyle\int dx=x\).
$$ \begin{align*} \int\frac{1}{u}dy&=\int dx\\ \ln|u|&=x+C\\ \ln|\ln y|&=x+C\\ y&=ke^{e^x} \end{align*} $$