Question

Solution

We need to show that \(\infty\times 10^\infty\) is the same as \(\infty\times 2^\infty\).

$$ \begin{align*} 10^\infty&=(2^{\log_2 10})^\infty\\ &=2^{\log_2 10\times\infty} \end{align*} $$

By the identity \(k\times\infty=\infty\) $$2^{\log_2 10\times\infty}=2^{\infty}$$

Therefore $$\infty\times 10^\infty=\infty\times 2^\infty$$